我们显示出与错误(LWE)问题的经典学习之间的直接和概念上的简单减少,其连续类似物(Bruna,Regev,Song and Tang,STOC 2021)。这使我们能够将基于LWE的密码学的强大机械带到Clwe的应用中。例如,我们在GAP最短矢量问题的经典最坏情况下获得了Clwe的硬度。以前,这仅在晶格问题的量子最坏情况下才知道。更广泛地说,随着我们在两个问题之间的减少,LWE的未来发展也将适用于CLWE及其下游应用程序。作为一种具体的应用,我们显示了高斯混合物密度估计的硬度结果改善。在此计算问题中,给定样品访问高斯人的混合物,目标是输出估计混合物密度函数的函数。在经典LWE问题的(合理且被广泛相信的)指数硬度下,我们表明高斯混合物密度估计$ \ Mathbb {r}^n $,大约$ \ log n $ gaussian组件给定$ \ mathsf {poly}(poly}(poly}(poly})) n)$样品需要$ n $的时间准分线性。在LWE的(保守)多项式硬度下,我们显示出$ n^{\ epsilon} $高斯的密度估计,对于任何常数$ \ epsilon> 0 $,它可以改善Bruna,Regev,Song和Tang(Stoc 2021) ,在多项式(量子)硬度假设下,他们至少以$ \ sqrt {n} $高斯的表现表现出硬度。我们的关键技术工具是从古典LWE到LWE的缩短,并使用$ k $ -sparse Secrets,其中噪声的乘法增加仅为$ o(\ sqrt {k})$,与环境尺寸$ n $无关。
translated by 谷歌翻译
序列模型是现代NLP系统的关键组成部分,但它们的预测难以解释。我们考虑虽然可以解释单个模型预测的基础,但是可以解释各种模型预测的上下文的模型解释。通过解决组合优化来找到顺序律师:最佳理由是输入令牌的最小子集,这些令牌将预测与完整序列相同的输出。枚举所有子集是棘手的,因此我们提出了一种高效的贪婪算法来近似这个目标。称为贪婪合理化的算法适用于任何模型。对于这种方法有效,模型应该在对上下文的不完整子集进行预测时形成兼容的条件分布。这种情况可以用短的微调步骤强制执行。我们研究语言建模与机器翻译的贪婪合理化。与现有的基线相比,贪婪合理化是最优化组合目标的,并提供最忠实的理由。在注释的顺序理由的新数据集中,贪婪的理由与人类理由最相似。
translated by 谷歌翻译